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*  T4.1	Improved	Models	from	Real-Time	Regression	
with	Latent	Contact	Type	Inference.		
-  Parametric	identification	with	arbitrary	choices	of	the	

base	link	for	accurate	and	computationally	efficient	
torque	and	external-force	estimation.	

-  Maximum-a-posteriori	dynamics	

Outline	



Premises	
*  On	the	iCub	joint	torques	AND	external-forces	are	
estimated	from	embedded	force/torque	sensors.	
*  The	algorithm	is	consists	of	reordering		the	recursive	
Newton-Euler	algorithm.	Specifically,	the	base	link	is	
chosen	to	coincide	with	the	perceived	location	of	
external	forces	(requires	skin	sensor).	

Problem	
*  Improving	the	above	procedure	by	identifying	the	
dynamic	model.	

Whole-body	dynamics	identification	
for	enhanced	torque	control	



Previous	results	
*  Parameters	estimated	from	base-force	can	be	used	to	
compute	joint-torques.	
*  With	base-force	sensing	the	so	called	base	parameters	

can	be	identified.	
*  With	joint-torque	sensing	only	a	subset	of	the	base	

parameters	can	be	identified	(Ayusawa	et	al.,	2013)	.	

Problem	(reformulated)	
*  Parameters	estimated	from	base-force	can	be	used	to	
compute	joint-torques	AND	external	forces?	

Whole-body	dynamics	identification	
for	enhanced	torque	control	



Identification	with	torque@joints	
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Articulated	rigid	body	dynamics	

Joint	space	dynamics		

Assumption:	known	forces	and	
base	accelerations		

Parametric	representation	

Identifiable	parameters	
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Identification	with	force@base	
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Articulated	rigid	body	dynamics	

Base	dynamics		

Assumption:	known	forces	

Parametric	representation	

Base	parameters	



Identification	with	force@base	
Proposition	(Ayusawa	et	al.,	2013)	
		
The	 indefinable	 parameters	 subspace	
a s s o c i a t e d	 t o	 j o i n t	 t o r q u e	
measurements	 is	 a	 subspace	 of	 the	
one	 assoc iated	 to	 base	 force	
measurements.	 	 In	 other	 terms,	 the	
parameters	 estimated	 with	 base	
forces	 can	 be	 used	 to	 predict	 joint	
torques.		

Proposition	(Traversaro	et	al.,	2015)	
		
The	 indefinable	 parameters	 subspace	
associated	 with	 different	 choices	 of	
the	 base	 link	 coincides	 with	 the	
subspace	 associated	 to	 a	 specific	
choice	of	the	base	link.		In	other	terms,	
the	 parameters	 estimated	 with	 base	
forces	 can	 be	 used	 to	 predict	 joint	
torques	and	external-forces.		

Open-source	code:	
https://github.com/robotology-playground/idyntree		

S.	Traversaro	et	al.	(ICRA	2015)	



Motivations:	
*  Cons:	classical	dynamics	computations	(e.g.	inverse	
dynamics)	rely	on	a	subset	of	available	sensors	(e.g.	
inverse	dynamics	).	
*  Pros:	classical	computations	are	computationally	
efficient,	e.g.	RNEA	is	O(n).	

Problem:	
*  Efficiently	compute	the	dynamics	by	exploiting	all	
available	sensors,	including	force/torque	sensors,	
gyros	and	accelerometers.		

Maximum-a-posteriori	dynamics	



*  T4.1	Improved	Models	from	Real-Time	Regression	
with	Latent	Contact	Type	Inference.		
-  Parametric	identification	with	arbitrary	choices	of	the	

base	link	for	accurate	and	computationally	efficient	
torque	and	external-force	estimation.	

-  Maximum-a-posteriori	dynamics.	

Outline	



Notation	

v
i

: the link spatial velocity,

a
i

: the link spatial accelerations,

f
i

: the spatial force transmitted to body i from �(i),

fx

i

: external forces acting on body i.

qi: the joint i position,

q̇i: the joint i velocity,

q̈i: the joint i acceleration,

⌧i: the joint i torque.

Joint	quantities	 Link	quantities	
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Dynamic	variables	 Joint	positions	 Joint	velocities	



Spatial	transformations	

Spatial	transformations	
jXi: motion-vector transform from link i to j,

jX⇤
i : force-vector transform from link i to j,

Ii: spatial inertia tensor link i,

(v)l: linear component,

(v)a: angular component,

⇥: cross product on spatial motions,

⇥⇤
: cross product on spatial forces.

vi =
iX�(i)v�(i) + Siq̇i, vi(q, q̇)
Link	velocities	

5.3. THE RECURSIVE NEWTON-EULER ALGORITHM 93
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Figure 5.1: Forces acting on body i

Step 1: Let vi and ai be the velocity and acceleration of body i. The velocity
of any body in a kinematic tree can be defined recursively as the sum of the
velocity of its parent and the velocity across the joint connecting it to its parent.
Thus,

vi = vλ(i) + Si q̇i . (v0 = 0) (5.7)

(Initial values are shown in brackets.) The recurrence relation for accelerations
is obtained by differentiating this equation, resulting in

ai = aλ(i) + Si q̈i + Ṡi q̇i . (a0 = 0) (5.8)

Successive iterations of these two formulae, with i ranging from 1 to NB, will
calculate the velocity and acceleration of every body in the tree.

Step 2: Let fB

i be the net force acting on body i. This force is related to the
acceleration of body i by the equation of motion

fB

i = Ii ai + vi ×∗ Ii vi . (5.9)

Step 3: Referring to Figure 5.1, let fi be the force transmitted from body λ(i)
to body i across joint i, and let fx

i be the external force (if any) acting on body
i. External forces can model a variety of environmental influences: force fields,
physical contacts, and so on. They are regarded as inputs to the algorithm;
that is, their values are assumed to be known. The net force on body i is then

fB

i = fi + fx
i −

∑

j∈µ(i)

fj ,

which can be rearranged to give a recurrence relation for the joint forces:

fi = fB

i − fx
i +

∑

j∈µ(i)

fj . (5.10)



Measurement	equation	and	dynamical	consistency	
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Y (q, q̇)d+ bY (q, q̇) = y.

Measurement	equations	

D(q)d+ bD(q, q̇) = 0

Dynamic	and	kinematic	constraints	
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Y (q, q̇)d+ bY (q, q̇) = y.D(q)d+ bD(q, q̇) = 0

p(d,y) = p(d)p(y|d)

p(d) / exp
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,

e(d) = D(q)d+ bD(q, ˙q),

p(y|d) ⇠ N (µy,⌃y) ,
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Problem	1:	estimation	

ESTIMATION: estimate d given y.



Computational	efficiency	
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Probabilistic NE with non−sparse solver
Probabilistic NE with sparse solver
Probabilistic NE with junction tree

q̈1 a1 a2 q̈2

f1 f2

⌧1 ⌧2

fx

1 fx

2

Computations	have	been	optimized	
by	exploiting	the	matrices	sparsity.		

Open-source	code:	https://github.com/iron76/bnt_time_varying	
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STATE ESTIMATION: estimate q, q̇ given y.

Problem	2:	state	estimation	



Problem	3:	hyper-parameter	estimation	

HYPERPARAMETER ESTIMATION: estimate ⌃y and ⌃d given y.
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After learning
Before learning

External	force	estimation	

Log-likelihood	optimization	

Open-source	code:	https://github.com/iron76/bnt_time_varying	


