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Goal: 
optimal control of humanoid robots 

• Quick, autonomous adaptation to novel 
circumstances. 

• Unified framework for different tasks (e.g. 
grasping, walking). 

• User guidance should be easy and 
intuitive. 
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Challenges 

• Simulation: torques, friction, contact. 

• Optimization: nonlinear, nonconvex, high-
DoF. 

• Systems: estimation, integration, feedback 
control. 

• Human operator: flexibility, visualization, 
interfaces. 
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MPC in MuJoCo 

• A new physics engine: MuJoCo (Multi-
Joint simulation with Contacts). 

• An optimization framework around 
MuJoCo that can operate in real-time. 

• An integrated system for controlling 
articulated robots. 
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Optimal Control 
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Model-Based Optimization 
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Trajectory Optimization 
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Trajectory Optimization 

Dynamics: 

Cost: 
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10 (Single shooting / indirect optimization) 



Trajectory Optimization 
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One Plan is not Enough 

• Modeling errors 

• Estimation errors 

• Dynamic environment 
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Model-Predictive Control 

Tassa, Erez and Smart, NIPS 2008 
Tassa, Erez and Todorov, IROS 2012 

 

 

 

 

• There is always a plan. 

• The plan is constantly updated.  

• Only the initial portion is ever executed. 
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Modeling Errors 
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The Swimmer 
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Tassa, Erez and Smart, NIPS 2008 



Physics Simulation 

 

Todorov, Erez and Tassa, IROS 2012 
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MuJoCo 

fast accurate 

differentiable 



Contact Modeling 

• Non-convex 

• Non-smooth 

• NP-hard 
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Contact dynamics 
Coulomb friction (NP hard) 

complementarity: 

A contact inverse inertia: 

b contact velocity before impulse 

f contact impulse 

v contact velocity after impulse 
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Define the contact impulse by minimizing contact-space kinetic energy 
subject to            for each contact. 
Replace the penetration constraint with a penalty function  
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Todorov, ICRA 2011 
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Timing (Single Core) 
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One dynamics step 
(35 DOF, 8 contacts) 

0.01 ms = 100,000/sec 

Optimization step with 
300 ms planning horizon 

110ms 
(9 updates/second) 



Harnessing Parallelization 
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One optimization step 

Single i7 core: 9 updates/second 

Quad-core i7: 33 updates/second 

8-core Xeon 
(Amazon EC2): 

50 updates/second 
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Harnessing Parallelization 
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• GPGPU 
 

• Intel’s Xeon Phi co-processor 
 



System integration 

• Specification language for models and cost 
functions, transitions and alterations. 

• Visualization for monitoring the system’s 
state – timing, estimation, prediction 
errors, optimization status. 

• GUI – switching between tasks, adjusting 
weights. 
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• Screenshots of xml/ visualization? 
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Future work 

• Estimation with contact 

• Combining direct optimization to 
minimize cost tweaking 

• Learning from experience 

• “Instincts” – low-level overriding 
controllers 

• Stiff, geared robots 

• Pneumatic systems 
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Thank you! 

Emo Todorov Yuval Tassa 


