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Goal:
optimal control of humanoid robots

* Quick, autonomous adaptation to novel
circumstances.

 Unified framework for different tasks (e.g.
grasping, walking).

 User guidance should be easy and
intuitive.



Challenges

Simulation: torques, friction, contact.

Optimization: nonlinear, nonconvex, high-
DolF.

Systems: estimation, integration, feedback
control.

Human operator: flexibility, visualization,
interfaces.



MPC 1n MuJoCo

* A new physics engine: MuJoCo (Multi-
Joint simulation with Contacts).

» An optimization framework around
MuJoCo that can operate in real-time.

» An integrated system for controlling
articulated robots.
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Model-Based Optimization
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Trajectory Optimization



Trajectory Optimization
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Trajectory Optimization
State X , control U
Dynamics: x' = f(X, 11)
Cost: K(X, 11), Q(Xﬁnal)
Initial state: X

Control Uj,Ug...UxN
sequence:

(Single shooting / indirect optimization)



Trajectory Optimization
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One Plan 1s not Enough

* Modeling errors
» Estimation errors
* Dynamic environment



Model-Predictive Control
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» There is always a plan.
* The plan is constantly updated.
 Only the initial portion is ever executed.

Tassa, Erez and Smart, NIPS 2008
Tassa, Erez and Todorov, IROS 2012



Modeling Errors
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The Swimmer
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Tassa, Erez and Smart, NIPS 2008



Physics Simulation

fast accurate

MudoCo

differentiable

Todorov, Erez and Tassa, IROS 2012



Contact Modeling

* Non-convex
e Non-smooth

e NP-hard

N




Contact dynamics

Coulomb friction (NP hard)
XLy complementarity: x>0, y>0,xy=0

v=Af+b
v, L f, A contact inverse inertia: A=JM *J7
contact velocity before impulse
HVT H L fN - H fT H f contact impulse
\ T i = fT , as0 Vv contact velocity after impulse

: : e o 1+,
Define the contact impulse by minimizing contact-space kinetic energy EVT Ay,
subjectto v, >0, f, >0, uf,>|f;| foreach contact.
Replace the penetration constraint with a penalty function d,, (v)

. ball drop
Forward contact dynamics: (A,b)— (f,v=Af +b) |
norma
o .1 T 2T impulse
f*=argmin, > fTAf + fTo+d, (Af +b)
0
Inverse contact dynamics: (A, v) > (f ,b=v—Af ) s Jertical
. ] - velocity
f*=argmin, f7(v+AvVd,(v))
o 200 400 600

Todorov, ICRA 2011 time (msec)  '°



Timing (Single Core)

One dynamics step 0.01 ms = 100,000/sec
(35 DOF, 8 contacts)



Harnessing Parallelization

One optimization step

Single 17 core: 9 updates/second
Quad-core 17: 33 updates/second
8-core Xeon 50 updates/second

(Amazon EC2):
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Harnessing Parallelization

 GPGPU

» Intel’s Xeon Phi co-processor

Yeor® Ph* Copocesser -_E L.




System Integration

» Specification language for models and cost
functions, transitions and alterations.

» Visualization for monitoring the system’s
state — timing, estimation, prediction
errors, optimization status.

« GUI - switching between tasks, adjusting
weights.
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MuleCo Studt

Physics | Mode

Style

Select

Integrator
Collision
Algorithm
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Setting
Timestep 0005
Gravity 00-981
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Wind 000
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Future work

Estimation with contact

Combining direct optimization to
minimize cost tweaking

Learning from experience

“Instincts” — low-level overriding
controllers

Stiff, geared robots
Pneumatic systems



Thank you!

Emo Todorov Yuval Tassa



